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ABSTRACT: Ionization rate coefficient and Recombination rate coefficient, 

Fractional abundance, the excitation Rate Coefficient and Contribution function 

of iron ions are fully determined by electron temperature. Fractional abundance 

of ion of charge z can be determined by taking   ratio of Density of ion of charge 

z to the summation of density of all possible ionized states. The excitation Rate 

Coefficient, the fractional Abundance and electron density decide the intensity of 

spectral line. The spectral line intensity is proportional to the contribution 

function. The Contribution function can be found by taking product of fractional 

ion abundance and its excitation rate coefficient of upper state of transition 

emitting the spectral line in consideration. In present work the fractional 

abundance, excitation rate coefficient and Contribution function of spectral line (

 =340 A
o
) of Fe XVI ion as a function of electron temperature are computed 

and are studied by presenting graphically. 
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1. INTRODUCTION  
It is well known that energy states of 

atoms and ions in the plasma are 

populated by electron collisions and 

depopulated by collisions of ions with 

slow electrons. Besides the collisional 

processes the atomic and ionic states are 

populated and depopulated due to some 

radiative processes also.  

Electrons passing through the plasma 

transfer their energy to the plasma 

particles by two types of collisions i) 

Elastic collisions   ii) Inelastic collisions.  

In elastic collisions the transfer of 

kinetic energy of electron in to the kinetic 

energy of the plasma particles (atoms or 

ions) takes place. In this process the 

kinetic energy of the colliding particles is 

conserved.  This type of collisional 

process is responsible to the heating of the 

plasma particles to some extent. In fact 

the second type of collision i.e. inelastic 

collisions are mainly responsible for the 

excitation of atoms and ions in the 

plasma. Any collision in which the 

internal energy of excitation of a particle 

is changed is referred to as inelastic 

collision. In this type of collision the 

kinetic energy of electron is converted 

into potential energy of colliding plasma 

particles and the plasma particles get 
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excited. These particles in excited states 

either transfer their energy back to the 

electron or they undergo a transition 

giving radiative emission. The rate of 

transfer of energy from the electrons to 

the plasma particles may be written as, 

g e e c gi e in j gi e dex i

j j

dE
N C N E N N C E N N C E

dt
   

 (1) 

where Ng is number of gas particles. Ce is 

coefficient of elastic collision. Ec is 

energy transferred in elastic collisions. 

Cin is rate coefficient of inelastic 

collisions. Ej is energy of the jth state 

excited by elastic collision. Cdex is de-

excitation rate coefficient. Ei is energy of 

excited particles which transfers its 

energy to the electrons.  

The sum runs over all possible energy 

states of the plasma particles.  

All the processes which can populate 

or depopulate the states of plasma 

particles are explained below. 

2.  ELECTRON IMPACT EXCITATION 

(EIE) 
In electron impact excitation, the 

energy from the high energy electrons is 

transferred to the colliding atoms or ions 

in the plasma. When an electron having 

energy more than the excitation energy of 

an electron rotating around nucleus of an 

atom / ion collides with the atom / ion 

may transfer its energy to the system and 

this may result in excitation of the rotating 

electron to a higher orbit. The probability 

of excitation depends upon energy of 

exciting electron and cross section of 

excitation at that particular energy. The 

excitation rate depends upon the 

excitation cross section and the number of 

effective collisions made by the electron. 

The number of effective collisions is 

function of electron velocity, which intern 

is a function of electron temperature (Te). 

As we know that the plasmas consists of 

atoms, ions and electrons, there can be 

two types of electron impact excitation 

processes depending upon whether the 

colliding particles are atoms in ground 

state or ion in ground state. And 

accordingly these electron impact 

excitation (EIE) rate coefficients are de-

fined as direct excitation and stepwise 

excitation respectively. The EIE rate 

coefficient is expressed in terms of 

excitation cross section σ and electron 

velocity Ve as < σVe >.  Now for the two 

types of electron impact excitations we 

can write, 

R= < σsVe >                  (2) 

and 

D = < σd Ve >                (3) 

where, 

R is EIE rate coefficient due to stepwise 

excitation. 

D is EIE rate coefficient due to direct 

excitation. 

σs is EIE cross section for states from 

ground state of ions. 

σd is EIE cross section for the states from 

ground state of neutral atom. 

The velocity of an electron is function 

of its energy and related to its energy E by 

the relation, 

Ve = 5.9 × 107 (E)1/2            (4) 

The number dN of the electrons 

having energy between E and E+dE is 

given for Maxwellian distribution by 

equation, 

dN = N × ( 2/ KTe) × [E /(πKTe)]1/2 ×  

          EXP(-E / KTe )dE                    (5) 

Thus the rate of excitation of energy 

levels by stepwise and direct excitation 

are respectively expressed as, 

dR = N × ( 2/ KTe) ×[ E /(πKTe)]1/2 ×(σs  

         Ve) × EXP(-E / KTe ) dE        (6) 

and 

dD = N × ( 2/ KTe) × [ E/(πKTe)]1/2 × 

(σdVe) × EXP(-E / KTe) dE             (7) 

The total excitation rate coefficient 

can be obtained by integrating above 

equation within the limits from 0 to ∞. 

As the excitation process does not 

occur if the energy of incident electron is 
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less than the threshold energy Es, the 

excitation cross section is zero for energy 

less than Es. Therefore the lower limit of 

integration is taken as Es instead of zero. 

Further it is convenient to express the 

electron temperature and electron energy 

in eV. If Te, E and dE are all in eV and 

cross section values are in cm2, the 

equation (6) and equation (7) be written 

as, 

 
 

7
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and  
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 (9)  

respectively. 

These equations clearly show that if 

the values of the excitation cross section 

are known at different values of the 

electron energy, the excitation rate 

coefficients may be obtained at different 

electron temperatures.  

3.  PENNING EXCITATION  
Excitation energy can be exchanged 

between neutral atoms. In particular, an 

excited atom can get ionized by virtue of 

its excitation energy, if the later is larger 

than the required ionization energy. Such 

a process is made more probable if the 

excited atom is in metastable state and has 

thus longer lifetime in which the particle 

may undergo an effective collision.  When 

one of the colliding atoms is in metastable 

state and the other one is in ground state, 

there is a probability of ionizing second 

atom and getting excited to the excited 

state depending upon the energy of the 

metastable atom. Such a process is 

referred to as penning excitation. 

4.  DUFFENDUCK EXCITATION  
The process in which an ion having 

charge z in a ground state, when collide 

with the other ion having charge z' in 

ground state, transfers its energy to the 

colliding partner and the other ion gets 

ionized. This process of ionization and 

excitation of one ion and recombination 

of other ion is   known as Duffenduck 

excitation or charge transfer. 

For computation of excitation rate 

coefficients, we have used the formula 

proposed by Breton [1] which is useful for 

computation of excitation rate coefficient 

of heavy atoms like iron as a function of 

electron temperature. The formula 

proposed by Breton is based on the Bethe-

Born approximation for optically allowed 

transitions [2] which is given below. 

  

 

1/2

5

3/2
1.6 10

f g
Q e

E

  
   


   (10)                             

where Q is in cm3 sec-1, Te is in eV, ΔE 

is the excitation energy in eV. 

Β = (ΔE / Te)  

where, 

f is the absorption oscillator strength. 

 g   is the average effective Ground 

factor. 

The expression for  g   which is 

proposed by Mewe [3] is given below. 

 

 g  = A+ (Bβ - Cβ2 + D)eβ  E1(β) + Cβ.                      

                                                                     (11) 

 

where A, B, C and D are adjustable 

parameters. This formula may also 

include optically forbidden monopole or 

quadrapole transitions (for example H - 

like ions, the 1s → ns or 1s → nd 

transitions respectively) and spin 

exchange transitions (for example singlet-

triplet transitions in He like ions). In these 

cases, f in equation (1) assumes the f 

values of the allowed transitions to the 

level with the same principle quantum 

number. For example, the   transition  

1s → ns and 1s → nd in the H - like 

sequence the f value of 1s → np is 

chosen:  for 1s2 1S → 1s 2s3S in the He 

like sequence, that of 1s2 1S → 1s 2p 1P 

is used. 

The iron transition included in 

excitation rate coefficient computations 

together with wavelengths λ, the 
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excitation energies ΔE and f values, we 

used values in C. Breton et al [1]. For the 

parameters A, B, C and D we the used 

values in Mewe [3] who gives these 

values for several transition in H, He, Li 

and Ne sequences by fitting the function 

 g   to the available theoretical and 

experimental data. For other ion 

sequences, with an accuracy to within a 

factor of three, he proposes A = 0.15 (Δn 

  0) or A = 0.6 (Δn = 0), B = C = 0, D = 

0.28 for allowed transitions, A = 0.15, B = 

C = D = 0 for forbidden monopole or 

quadrupole transitions and A = B = D = 0, 

C = 0.1 for spin-exchange transitions.  

The excitation rate of an energy level 

of an ion is given by,  

u
e z zu

dN
N N R

dt
                    (12) 

where, 

Ne is the electron density. 

Nz is the fractional density of the ion of 

charge z  

Rzu is the electron impact excitation rate 

coefficient of the state of ion of charge z.   

The excited states in the plasma are 

dexcited by radiative transitions. 

Therefore we may write, 

u udN N

dt 


                             (13) 

where   is the radiative life time of the 

state.  

When the plasma is in steady state the 

excitation rate of a state would be equal to 

dexcitation rate. Therefore, Rate of 

excitation is equal to Rate of dexcitation. 

The energy states of the ions dexcite only 

because of the radiative decay and 

therefore, Rate of excitation is equal to 

Rate of dexcitation by radiative decay. 

In other words, we can write, Rate of 

excitation is directly proportional to Rate 

of photon emission. Also, Rate of 

excitation is directly proportional to 

Intensity of radiation. 

Thus, Intensity of radiation is 

directly proportional to Rate of photon 

emission and Rate of excitation of the 

energy states. 

5. THE EXCITATION RATE 

COEFFICIENTS  

Excitation Rate Coefficients are useful 

in computing the contribution functions of 

various spectral lines. In present work, to 

study the excitation rate coefficient, we 

have computed excitation rate coefficient 

of Fe XVI using Bretons formula [1] as a 

function of electron temperature and 

presented graphically in figures (1).  

 

 

Fig. 1 Excitation Rate Coefficient Of Iron 

Ions As A Function Of Electron 

Temperature. 

From above graph it observes that, the 

excitation rate coefficient (ERC) is very 

sensitive function of the electron 

temperature before it reaches its peak 

value but the variation of the function 

becomes very slow varying function of 

electron temperature near its saturation 

value.  

6. FRACTIONAL ABUNDANCE 
Plasma consists of the electrons and 

the ions with different charges. The 

collision between the atoms, ions of 

different charges and electrons results in 

ionization. At the same time the ions may 

capture the electrons and results in 

formation of ions of lower charge. The 

ionization and Recombination processes 

compete each other so that the ionization 

rate and recombination rate reach, each to 
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a certain value and equilibrium is attained. 

As long as the electron temperature is not 

changed the equilibrium remains in a 

particular state. A change in electron 

temperature results in changing the densi-

ties of ions and electrons. Thus densities 

of ions and electrons are completely 

dictated by the electron temperature. The 

plasma emission depends upon the 

fraction of total density of species 

remaining in a particular ionized state, the 

electron density and the electron 

temperature. 

The amount of the fraction of the total 

density of species remaining in a 

particular ionized state is called as 

fractional abundance of that ion.  

Equation for the time rate of change of 

population density of ion of charge z can 

be written            as,  

 

 1 1 1 1   z
e z z z z z z z z

dN
n N S N S N N

dt
        

 (14) 

where z takes all values between 0 and 

maximum charge on the ion. 

The  ionization state of each element 

of atomic number z is controlled by 

electron impact ionization (including au-

toionization) from state z → z +1 with 

total rate coefficient Sz,z (cm3 sec-1) and 

radiative plus dielectronic recombination 

z+1→ z with rate coefficient z,z+1  ( 

cm3 sec-1 ) 

In steady state, the time rate of change 

of population density of ion of charge z 

will be zero. 

In steady state condition, where the 

time rate change of population density of 

ion of charge z will be zero, the equation 

(14) reduces to,  

 

Nzz = Nz+1z+1                  (15)                                                                               

 

The population density ratio 

(Nz,z+1/Nz,z) of two adjacent ion stages 

Z+(z+1) and Z+z can be derived by using 

steady state equation (15).  

 

1

1

z z

z z

N S

N 




                           (16) 

where S(z) is ionization rate 

coefficient of ion of charge z. z+1 is 

recombination rate coefficient of  ion of 

charge z+1. Nz and Nz+1 are densities of 

ion with charge z and z+1 respectively. 

6.1 EXPRESSION FOR FRACTIONAL 

ABUNDANCE 
Thus, population density ratio (Nz, 

z+1 / Nz,z) can be evaluated in terms of  

Sz and αz+1. As the values of Sz and 

αz+1 are fully determined by the electron 

temperature. Therefore the fractional 

abundance and population density of any 

ion in the plasma depends only on the 

electron temperature. The fractional 

abundance of a Fe XV species in the 

tokamak plasma is evaluated by using 

equation (16) and the procedure followed 

by [4] is considered to get formula for 

Fractional abundance.  

The fractional abundance of an ion of 

charge z can be written as, 

'

'

z
z

z

z

N
F

N



                               (17) 

Where Fz, the fractional abundance of ion 

of charge z.  Nz, the density of ion with 

charge z. The sum runs over all possible 

ionized states.                                                    

To study the behavior of Fractional 

abundance of Fe XV, using equation (17) 

as a function of electron temperature is 

computed and presented graphically in 

figure (2) as a function of electron 

temperature.   

At lower electron temperature, the 

fractional abundance curves are non-

linear. As a electron temperature 

increases, the fractional abundance 
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increases quite linearly. But as we reach 

towards the peak, the rise in fractional 

abundance becomes slightly non-linear. 

The fractional abundance decreases non-

linearly near the peak of the curve and 

further if electron temperature increases 

the fractional abundance decreases almost 

linearly up to certain electron 

temperature. As electron temperature 

increases further, the fall in fractional 

abundance becomes non-linear and 

approaches to zero. 

 
Fig. 2 Fractional Abundance of Fe XV 

as function of electron temperature  

7. THE CONTRIBUTION FUNCTION  
The contribution function is an 

electron temperature dependent part of the    

flux emitted by a spectral line and it is a 

measure of spectral line intensity because, 

spectral line intensity is proportional to 

their contribution function. The 

contribution function can be defined as 

the product of fractional ion abundance 

and the excitation rate coefficient of the 

upper state of the transition emitting the 

spectral line in consideration. The 

equation for contribution function can be 

written as, 

C(z) = Nz  Rzu                 (18) 

Where Nz is the fractional density of 

the ion of charge z and Rzu is the electron 

impact excitation rate coefficient of the 

state u of ion of charge z 

8.  RESULTS AND DISCUSSION 
We have computed contribution 

function C(z )  by taking product of 

fractional abundance Nz of ion of charge 

z  and electron impact excitation rate 

coefficient Rzu of the state u  of ion of 

charge z for few spectral line (  =340 A
o
) 

for Fe XVI.  

The contribution function of ion in 

consideration rises almost linearly up to 

its peak value as electron temperature 

rises. As the electron temperature 

increases above the electron temperature 

where contribution function becomes 

maximum, the contribution function 

decreases linearly up to the electron 

temperature at which contribution 

function is about 60% of its peak value. 

For further increase in electron 

temperature the contribution function 

decreases non-linearly and non-linearity 

in curves increases as electron 

temperature rises for higher values. 

As we know that, contribution 

function depends upon fractional ion 

abundance, excitation rate coefficient and 

electron temperature. Fractional ion 

abundance and excitation rate coefficient 

is a function of electron temperature. We 

have studied, the variation in fractional 

ion abundance, excitation rate coefficient 

and contribution function of spectral line 

(= 340 Ao) of Fe XVI ion as a function 

of electron temperature and the results are 

displayed in figure (3).  

 
Fig. 3 Fractional Abundance (dotted 

curve), Excitation Rate Coefficient (dash 

dot curve) And Contribution Function 

(solid curve) of Spectral Line (  = 340 

A
o
)  For Fe XVI Ion. 
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The nature of curve shows that, 

while excitation rate coefficient is 

approaching to its peak value, the 

fractional ion abundance start showing its 

existence. The excitation rate coefficient 

reaches a saturation and changes very 

slowly with electron temperature. It 

means that the fractional ion abundance is 

a very slowly varying function of electron 

temperature until the excitation rate 

coefficient reaches to its peak value. 

During this range of temperature where 

fractional ion abundance is slowly varying 

function of electron temperature, the 

fractional ion abundance is very small, so 

contribution function is also very small. 

While the excitation rate coefficient starts 

to fall after reaching its peak, it becomes 

very slow varying function of electron 

temperature in the electron temperature 

range 125 eV to 1000 eV. During this 

range of electron temperature fractional 

ion abundance is very sensitive to changes 

in electron temperature. In the range of 

electron temperature 125 eV to 1000 eV 

the ERC is a very slow varying function 

of electron temperature where fractional 

ion abundance is very sensitive function 

of electron temperature. So, the 

contribution function is very less 

dependent on excitation rate coefficient 

and fully dependent on fractional ion 

abundance. Thus, the fractional ion 

abundance only dictates the shape of the 

contribution function curve. 

To compare the contribution function 

curve with fractional ion abundance, we 

have plotted the dotted curve by 

multiplying fractional ion abundance of 

Fe XVI by 3.6 and compared with 

contribution function curve (solid curve) 

of same ion in figure (4). From figure we 

may see that the dotted curve and solid 

curve have almost same nature.  

Fig. 4 Fractional Abundance (dotted 

curve) is compared with contribution 

function multiplied by 3.6 (solid curve) of 

spectral line (  =340 Ao) for Fe XVI Ion. 

Dash dot curve represents the Excitation 

Rate Coefficient of Fe XVI ion. 

9. CONCLUSION  
The contribution function is very 

less dependent on excitation rate 

coefficient and fully dependent on 

fractional ion abundance. Thus, the 

fractional ion abundance only dictates the 

shape of the contribution function curve. 
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