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ABSTRACT:  

Surface modification of Aluminium coated glass substrate by tri-Aminosilane 

is reported in the present communication. The coverage of                                                       

3-Aminopropyltriethoxysilane (3-APTES) on Aluminium (Al) Coated Glass 

(Al/Glass) substrate has been accomplished by dip coating method. Al was 

deposited on glass substrate by thermal evaporation technique. During deposition of 

3-APTES various process parameters viz. solvent (toluene) concentration, 

deposition time and concentration of silane were optimized. The surface 

modification of Al/glass substrate with silane molecules was confirmed by ATR-

FTIR study. Surface morphology of                 3-APTES coated Al/glass substrate 

was investigated by Scanning Probe Technique viz. Atomic Force Microscopy 

(AFM). 
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1. INTRODUCTION 

The surface treatment of various metal and 

nonmetal substrates with silane groups has 

improved the performance of the metals and glass 

surfaces              [1, 2]. Recent studies of the 

formation of monomolecular assemblies on various 

solid surfaces attracted the growing attention of 

world [3]. Organosilane molecules functionalized 

solid surfaces have vital industrial applications viz. 

catalysts advanced composite materials and 

chromatographic supports [4,5,6,7]. Mechanism of 

Aminopropyltriethoxyslane (APTES) adsorption on 

glass surfaces has been widely studied [8-12].  In 

recent era, researchers are taking more keen efforts 

towards the potential application of silane self 

assembled monolayer’s which play significant role 

in attracting large molecules [13-16]. Functionalities 

of organic molecules allow the control of the 

hydrophobicity and hydrophilicity [17].  

The interaction of the self assembled 

monolayer’s coupling agents with the substrate 

surface may depend on the composition and the type 

of substrate surface [18], whether it is metallic or 

nonmetallic. Many investigations have been 

proposed to explain the function of silane group 

agents [19]. Silane monolayer’s play role of isolator 

and densely packed having number of applications 

in various fields [20]. The metal oxides and silicates 

surfaces naturally in balance with atmospheric 

moisture consist of surface  

hydroxyl groups. Thus, the surface hydroxyl and 

oxide group play significant role in the formation of 

each type of bonding [17]. The reactivity of surface 

immobilized groups totally depends on chemical 

accessibility. 

In The functionalization of monolayer on solid 

surfaces provides the suitable functional groups             

viz -SH, -CN -COOH, -NH2 and silanes [21]. In 

addition, the amino group itself acts as a catalyst 

and improves the adsorption rate of                                          

3-aminopropyltriethoxysilane molecules on the 

glass surface [22, 23]. These surfaces can be most 

useful in various Nanotechnology applications and 

architecture [24]. The schematic of the 3-APTES 

modified surface is shown in Fig. 1, where C2H5O is 

serve as head group, Si (Silane) act as tail group and 

NH2 as functional group. 
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Fig. 1 Formation of 3-Aminopropyltriethoxysilane 

monolayer on Al coated glass substrate. 

 

Aim of this investigation is to modify the surface of 

thermally evaporated glass substrate by                              

3-aminopropyltriethoxysilane. Dip coating method 

was used for the surface modification of Al/Glass 

substrate. The properties and structure of the silane-

coating layer was characterized using atomic force 

microscope (AFM) and FTIR spectroscopy. 

2. RESULTS AND DISCUSSION 

Al coated glass substrates were prepared by 

thermal evaporation method by optimizing various 

parameters. Molybdenum filament was used to heat 

evaporant (Aluminium). Ultimate chamber pressure 

was 1*10
-6 

Mbar. Typical filament current was 12 

Amps. Al deposition thickness achieved was 100nm.  

Al /Glass substrates prepared by thermal 

evaporation method were soaked in acetone for 

about two minutes, and then dried under dry air 

stream. This assures that the slides are free from any 

trace of oil or water. 

The preparation of 3-aminoporpyltriethoxysilane 

on Al /Glass substrate was done by dipping slides in 

solution containing 1ml of silane with 50ml toluene 

for 5hrs. Obtained slides were rinsed through 

anhydrous toluene to remove any excess reagent. 

Finally the 3-APTES coated substrates were heated 

in oven at 120
o
C for 20min. The obtained substrates 

were stored in desiccator under vacuum until further 

use. 

  FTIR  ANALYSIS: 

In order to investigate the terminal amino groups 

in    3-APTES on Al /Glass substrates FTIR 

characterization was carried out (Fig. 2), which 

gave a broad peak in between 1640-1550 cm
-1

 due 

to –NH stretching. The spectra of 3-APTES 

modified substrate show peak at 1028.73cm
-1 

for Si-

O stretching of the silane group which are playing 

vital role in compounds for anchoring in organic 

layer to surface. A broad peak appears around 2400 

cm
-1 

due to the existence of stronger hydrogen 

bonding of the SiOH group.  

 

 
   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 FTIR spectra of 3-Aminopropyltriethoxysilane 

monolayer on Al /glass substrate 

2.1 SURFACE MORPHOLOGICAL STUDY 
Atomic force microscopy was used to characterize 

structure of modified surface at molecular level and 

to understand the nature of adsorbed layer. It also 

offers the force difference between a tip and surface. 

AFM measurements were collected for 3-APTES 

coated substrate by Park XE-7 model.  Area of 5µm 

*5µm was scanned at different spots to ensure 

representative areas. All scans were done in non-

contact mode. AFM image of 3-APTES modified 

surface is shown in fig. 3(a). The average roughness 

of the surface was 42.00nm; histogram of the 

roughness was shown in fig 3(b) 

Fig. 3 NC-AFM image of grown APTES monolayer    

(a) topography of 3-APTES on Al coated glass substrate, 

 (b) Histogram of the roughness of grown monolayer. 

 

AFM contributes very effectively in the 

investigation of adhesion force of SAMs by 

observing adhesion interaction between different 

functional groups which determined from force-
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distance (F/D) spectroscopy.  This is comprehended 

by obtaining force-distance curve (fig. 4). Nature of 

F/D spectroscopy curve conform the soft nature of 

modified surface. The viscoelastic properties of 

closely packed 3-APTES monolayer obtained by 

AFM had suggested Young’s modulus of about 

1.84GPa. It also confirms the adhesion force of 

monolayer consisting the chemical bonding force, 

Vander walls and elastic force [17].  

  Adhesion energy of material is 4.97517*10
-15

J, 

which confirm the adhesion between of 3-APTES. 

Adhesion is one of the most important factor which 

helps to determine force between two different 

materials together. Pull-off force is considered as 

adhesion force [18]. For 3-APTES monolayer the 

AFM- measured pull-off force become 437.045*10
-

9
N it is determined from retracting part of cycle 

corresponds to adhesion between functional groups 

on tip and sample surface. 

 

 
 
Fig. 4 F/D spectroscopy curve of 3-APTES on Al / Glass 

Substrate 

 

3.  CONCLUSIONS 
 

In present investigation we have successfully 

carried out surface modification of Al/Glass 

substrate with               3-APTES by dip coating 

method. The properties and structure of tri-

aminosilane treated surface was investigated using 

surface characterization technique and spectroscopic 

technique viz. AFM, F-D spectroscopy and FTIR 

which confirms the APTES undergoes surface 

reactions. The F/D spectroscopy shows effective 

adhesion of 3-APTES and formation of soft nature 

surface. The morphological study confirms the 

distribution of 3-APTES molecules on substrate 

surface. 
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